
A New Model for
Image Distribution

Stephen Day
Distribution, Tech Lead
Docker, Inc.
stephen@docker.com
@stevvooe
github.com/stevvooe

http://github.com/stevvooe

Overview
• Why does this matter?
• History
• Docker Registry API V2
• Implementation
• The Future

What is Docker?

What is an Image?

What is an Image?

• Identified by a name
• ubuntu
• redis
• stevvooe/myapp

• docker run ubuntu
- Runs a container, created from image ubuntu

What is an Image?

• Containers, the runtime of docker, are created from images
• Filesystem made up with “layers”
- Just tar files
- Layers can be shared between images

• Includes a description organizing layers into an image

A runnable component with a filesystem

What is the Docker
Registry?

What is the Docker Registry?

• A central place to store and distribute
docker images

• Stores the layers and the description of how
they make up an image

• Implements a common API agreed upon by
Docker clients

What is the Docker Registry?

• Several Implementations
• A simple web server to make images available
• A complete web application
• Services

• Docker Hub
• Docker Trusted Registry

• Documentation: https://docs.docker.com/registry/

A central place to store and distribute docker images

https://docs.docker.com/registry/

History

Docker Registry API V1: History
• Layer Oriented
• Layer IDs are randomly assigned
• JSON object corresponding to each layer referencing a parent
• Naming accomplished through tags

Layer Layer Layer Layer

JSON JSON JSON JSONFetch(ID)

{

Registry API V1 URL Layout
Methods URL

GET /v1/_ping
GET, PUT /v1/images/(image_id)/layer
GET, PUT /v1/images/(image_id)/json
GET /v1/images/(image_id)/ancestry
GET /v1/repositories/(namespace)/(repository)/tags
GET, PUT, DELETE /v1/repositories/(namespace)/(repository)/tags/(tag*)
DELETE /v1/repositories/(namespace)/(repository)/
GET /v1/search

13

https://docs.docker.com/reference/api/hub_registry_spec/

https://docs.docker.com/reference/api/hub_registry_spec/

Docker Registry API V1: Problems

• Abstraction
- Exposes Internals of Image to distribution mechanism

• Security
- Image IDs must be kept secret

- Who assigns the layer IDs?

- Hard to audit, verify

• Performance
- Fetch a layer, fetch the parent, fetch the parent, …

Docker Registry API V1: Problems

• Implementation in Python
- Affected ease of deployment
- Reduced sharing with main Docker Project

• More information:
• https://github.com/docker/docker/issues/8093

https://github.com/docker/docker/issues/8093

Docker Registry API V2

Docker Registry API V2: Goals
• Simplicity
- Easy to implement
- Works with static host

• Security
- Verifiable Images
- Straightforward access control

Docker Registry API V2: Goals
• Distribution
- Separate location of content from naming

• Performance
- Remove the single track

• Implementation
- Use Go to increase code sharing with Docker Engine

Docker Registry API V2: Content Addressable

• Layers are treated as content-addressable blobs
- Much better for security
- Permits safe-distribution through untrusted channels

• All data can be verified
• De-duplication

• Improved cache-ability
• Content address is known as the “digest”

Docker Registry API V2: Digests
• Uniquely identifies content
• A cryptographically strong hash

- Chose a name, digest, that does not conflict with other concepts
(map, dict, crc, etc.)

- Simply using sha256(bytes)
• Independently Verifiable

- By agreeing on common algorithm, IDs chosen for content without
coordination

• Strongly-typed with tools to parse and verify
- http://godoc.org/github.com/docker/distribution/digest

http://godoc.org/github.com/docker/distribution/digest

Docker Registry API V2: Manifests
• Describes the components of an image in a single object

- Layers can be fetched immediately, in parallel

LayerLayer Layer Layer

JSONFetch(ID)

{

Docker Registry API V2: Manifests
{
 "name": <name>,
 "tag": <tag>,
 "fsLayers": [
 {
 "blobSum": <digest>
 },
 ...
]
],
 "history": [<v1 image json>, ...]
}

Docker Registry API V2: Manifest
• Content-addressable:
- docker pull
ubuntu@sha256:8126991394342c2775a9ba4a843869112da815
6037451fc424454db43c25d8b0

• Leverages Merkle DAG
- Because the digests of the layers are in the manifest, if any bit in the

layer changes, the digest of the manifest changes
- Similar to git, ipfs, camlistore and a host of other projects

• Tags are in the manifest
- This will going away

Docker Registry API V2: Repositories
• All content is now part of a named repository

- Image IDs are no longer a secret
- Simplified authorization model

• repository + operation (push, pull)
- Clients must “prove” content is available to another repository by

providing it
• Opened up namespace to allow more than two components

- No reason to have registry enforce “<user>/<image>”
- API “reversed” to make static layout easier

Registry API V2 URL Layout

Methods URL
GET /v2/

GET /v2/<name>/tags/list

GET, PUT, DELETE /v2/<name>/manifests/<reference>

GET /v2/<name>/blobs/<digest>

POST /v2/<name>/blobs/uploads/

GET, PUT, PATCH, DELETE /v2/<name>/blobs/uploads/<uuid>

https://docs.docker.com/registry/spec/api/

Docker Registry API V2: Design
• Shared-nothing

- “Backend” ties a cluster of registries together
- Allows scaling by adding instances
- Performance limited by backend

• Make backend faster, registry gets faster

• Pull-optimized
- Most important factor when distributing software
- May hurt certain use cases

• Resumable Pull and Push (specified but not implemented)
- Resumable pull already available with http Range requests
- Two-step upload start for resumable push
- Built into the protocol for future support

• A living specification
- Meant to be used and modified
- Always backwards compatible

Docker Registry API V2: Differences with V1
• Content addresses (digests) are primary identifier

• Unrolled image description model

• Multi-step upload
- Provides flexibility in failure modes

- Options for future alternative upload location (redirects)

• No Search API
- In V1, this API does everything

- Replacing with something better

• No explicit tagging API
- This will change: https://github.com/docker/distribution/pull/173

https://github.com/docker/distribution/pull/173

Docker Registry
2.0

–Earl Milford

“[A registry] should be
neither seen nor heard. ”

Handlers

Docker Registry 2.0: Architecture

Repository Repository

Storage

Access Control

Notifications

Docker Engine Auth

API

Docker Registry 2.0: An Ingredient
• Move away from monolithic architecture

• Narrower scope
- Distribute content

• Extensible
- Authentication

- Index

- Ponies

• Strong core
- Docker Hub

- Docker Trusted Registry

Docker Registry 2.0
• Full support released with Docker 1.6

- Minimal bugs

- Most problems are common to version upgrades

• Header required to declare support for 2.0 API

• Validated most concepts in 1.3, 1.4 with V2 preview
- Much faster pull performance

- You’ve probably already used it with Docker Hub

• There are some edge cases
- push-heavy workflows

- disk IO when verifying large images

- We are mitigating these

Docker Registry 2.0: Should you use it?
• Are you on Docker 1.6+?

- Yes.

• Evaluate it

• Test it

• Break it (and file bugs https://github.com/docker/distribution/issues)

• Deploy it

• Are you on Docker <1.6?
- Are you entrenched in v1?

• Perhaps, hold off

- Run dual stack v1, v2

• Not recommended

https://github.com/docker/distribution/issues

Docker Registry 2.0: Deploying
• Internal deployments

- Use the filesystem driver — it is really fast

- Backup with rsync

• Scale storage
- Use S3 driver

• Make sure you are “close” since round trip times can have an effect

• Scale Reads
- Use round robin DNS

• Do not use this for HA

- Rsync to followers on read-only filesystem

- Add machines to taste

• https://docs.docker.com/registry/deploying/

https://docs.docker.com/registry/deploying/

Docker Registry 2.0: Docker Hub
• Running the Hub

- S3 backend

• Having some trouble with round trips to s3 :(

- Decent performance with very little caching

• A lot of low hanging fruit left to tackle

• No longer intertwined with Docker Hub services
• Independent Authentication Service

• Heightened Availability

Monitoring culture

Docker Hub Adoption

0%

50%

100%

Last Three Months

V1
(1.5-)

V2
(1.6+)

Docker Hub Adoption

• Overall usage increasing
• A V2 world and growing

V1/V2 Protocol Overall Comparison

0

25

50

75

100

Requests Bandwidth

V1
V2

80% Fewer Requests 60% Less Bandwidth

V1/V2 Protocol HTTP Errors

Peak Average

V1
V2

5

Exceptional Panicking

• 1 Panic in Three Months of Production
• 4000 protocol level errors per 30 minutes in V1
• 5 protocol level errors per 30 minutes in V2

Docker Registry
2.1

Docker Registry 2.1
• Key Changes
- Documentation
- Pull-through Caching
- Soft-Deletion
- Native Basic Auth Support
- Stability
- Catalog API
- Storage Drivers

• Release coming by mid-July

Docker
Distribution

Docker Distribution: Goals
• Goals

- Improve the state of image distribution in Docker

- Build a solid and secure foundation

• Focus
- Security

- Reliability

- Performance

• Unlock new distribution models
- Integration with trust system (notary!)

- Relax reliance on registries

- Peer to Peer for large deployments

Docker Distribution: Future
• Ingredients

- From the start, we have targeted solid packages
- Provide Lego to build image distribution systems

• Clean up the docker daemon code base
- Defined new APIs for working with docker content
- Increase feature velocity
- Generalize around strong base

• Current Manifest format is provisional
- Still includes v1 layer JSON
- Content-addressability + mediatypes make support new formats trivial
- https://github.com/docker/distribution/pull/62

• Feature parity with V1 and maturity
- Building collective operational knowledge

• Deletes and Garbage Collection
- Diverse backend support makes this hard
- https://github.com/docker/distribution/issues/461
- https://github.com/docker/distribution/issues/462

• Search
- See the goals of Distribution to see why this is interesting

• Road Map: https://github.com/docker/distribution/wiki

https://github.com/docker/distribution/pull/62
https://github.com/docker/distribution/issues/461
https://github.com/docker/distribution/issues/462
https://github.com/docker/distribution/wiki

Thank you
Stephen Day

Google Group: distribution@dockerproject.org
GitHub: https://github.com/docker/distribution
IRC on Freenode: #docker-distribution

